skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tonshal, Basavaraj"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Increasingly, vehicles sold today are connected cars: they offer vehicle-to-infrastructure connectivity through built-in WiFi and cellular interfaces, and they act as mobile hotspots for devices in the vehicle. We study the connection quality available to connected cars today, focusing on user-facing, latency-sensitive applications. We find that network latency varies significantly and unpredictably at short time scales and that high tail latency substantially degrades user experience. We also find an increase in coverage options available due to commercial WiFi offerings and that variations in latency across network options are not well-correlated. Based on these findings, we develop RAVEN, an in-kernel MPTCP scheduler that mitigates tail latency and network unpredictability by using redundant transmission when confidence about network latency predictions is low. RAVEN has several novel design features. It operates transparently, without application modification or hints, to improve interactive latency. It seamlessly supports three or more wireless networks. Its in-kernel implementation allows proactive cancellation of transmissions made unnecessary through redundancy. Finally, it explicitly considers how the age of measurements affects confidence in predictions, allowing better handling of interactive applications that transmit infrequently and networks that exhibit periods of temporary poor performance. Results from speech, music, and recommender applications in both emulated and live vehicle experiments show substantial improvement in application response time 
    more » « less